Waves Transferring Energy

Practice Problem Solutions

Student Textbook page 341

1. Frame the Problem

- A metronome is undergoing periodic motion.
- The frequency is the number of cycles per second.
- The period is the time for one complete cycle.

Identify the Goal

There are two goals: frequency, *f*, and period, *T*.

Variables and Constants

Known	Unknown
<i>N</i> = 54	f
$\Delta t = 55 \text{ s}$	Т

Strategy

Use definition equations for frequency, $f = \frac{N}{\Delta t}$ and period $T = \frac{\Delta t}{N}$. All needed variables are known, so substitute.

$$f = \frac{54}{55 \text{ s}} = 0.98 \text{ Hz}$$

$$T = \frac{55 \text{ s}}{54} = 1.02 \text{ s}$$

The frequency is 0.98 Hz and the period is 1.02 s.

Validate

The metronome takes 55 s to beat 54 times, so one beat should take slightly longer than a second. It is beating at slightly less than one beat per second.

2. Frame the Problem

- Butterflies wings are undergoing periodic motion.
- Frequencies are given in beats per minute but are asked for in hertz.
- Hertz is cycles per second, so minute must be converted to 60 s.

Identify the Goal

The range of frequency in hertz.

Variables and Constants		
Known	Unknown	
$f_1 = 450$ beats/min	ſſ	
$f_{\rm h} = 650$ beats/min	ſh	

Strategy

1 minute = 60 s Divide by seconds per minute $f_1 = 450$ beats/min = $\frac{450 \text{ beats}}{60 \text{ s}} = 7.50$ Hz $f_h = 650$ beats/min = $\frac{650 \text{ beats}}{60 \text{ s}} = 10.8$ Hz The range of wing-beating frequencies for butterflies is from 7.50 Hz to 10.8 Hz.

Validate

600 times a minute, inside the given range, is about 10 times a second. The range of frequencies should be from a little below 10 times a second to a little above 10 times a second.

3. Frame the Problem

- A watch spring undergoes periodic motion, so has a frequency.
- The frequency is the number of cycles per second.

Identify the Goal

The time for 100 vibrations

Variables and Constants Known

KnownUnknownf = 3.58 Hz Δt N = 100

Strategy

Use definition equations for frequency, $f = \frac{N}{\Delta t}$ Solve equation for Δt and substitute.

 $\Delta t = \frac{N}{f} = \frac{100}{3.58 \text{ Hz}} = 29.7 \text{ s}$

The time for 100 vibrations is 29.7 s.

Validate

With a frequency of a little less than 4 oscillations per second, one oscillation should take a little more than $\frac{1}{4}$ s = 0.25 s. Therefore, it should take a little more than $\frac{1}{4} \times 100$ s, or 25 s, to make 100 oscillations.

4. Frame the Problem

- Swinging is a periodic motion.
- The frequency is the number of cycles per second.
- The period is the time for one complete cycle.

Identify the Goal

There are two goals: frequency, *f*, and period, *T*.

Variables and Constants

Known	Unknown
N = 12	f
$\Delta t = 30.0 \text{ s}$	Т

Strategy

Use definition equations for frequency, $f = \frac{N}{\Delta t}$ and period $T = \frac{\Delta t}{N}$.

All needed variables are known, so substitute.

$$f = \frac{12}{30 \text{ s}} = 0.40 \text{ Hz}$$
$$T = \frac{30 \text{ s}}{12} = 2.5 \text{ s}$$

The frequency of the swinging is 0.40 Hz and the period of swing is 2.5 s.

Validate

At 12 swings in 30 seconds, the child is taking over 2 s for each swing, and making less than half a swing per second.

Practice Problem Solutions

Student Textbook page 349-350

5. Frame the Problem

- A wave travelling in a spring has wavelength, frequency, and speed.
- The universal wave equation applies.
- Given a wave's speed, use $v = \frac{\Delta d}{\Delta t}$ to calculate the time to cover a distance.

Identify the Goal

The speed, v, of the wave and the time, Δt , to cover a given distance.

Variables and ConstantsKnownUnknown $\Delta d = 6.0 \text{ m}$ v

$\Delta d = 6.0 \text{ m}$	v
f = 10.0 Hz	Δt
$\lambda = 0.75 \text{ m}$	

Strategy

Convert wavelength from cm to m. Use universal wave equation to find the speed of the wave. Use $v = \frac{\Delta d}{\Delta t}$ to find the time.

$$v = f \lambda$$

= 10.0 Hz × 0.75 m
= 7.5 m/s
$$v = \frac{\Delta d}{\Delta t}$$

$$\Delta t = \frac{\Delta d}{v}$$

= $\frac{6.0 \text{ m}}{7.5 \text{ m/s}}$
= 0.67 s

The speed of the wave in the spring is 7.5 m/s and the time to travel down the spring is 0.67 s.

Validate

The wavelength is three quarters of a metre so, if waves were continuously being sent, about 8 waves should fit in the spring. At 10 waves per second, it should take less than a second for the waves to travel down the spring, and the waves should be travelling at greater than the length of the spring per second.

6. Frame the Problem

- Radio waves have wavelength, frequency, and speed.
- The frequency is related to wavelength and speed by the universal wave equation.

Identify the Goal

The frequency, *f*, of the waves.

Variables and Constants

KnownUnknown $\lambda = 21 \text{ cm} = 0.21 \text{ m}$ f $\nu = 3.0 \times 10^8 \text{ m/s}$

Strategy

Convert wavelength from cm to m. Use universal wave equation. Solve for *f* and substitute. $f = \frac{\nu}{\lambda}$

$$= \frac{3.0 \times 10^8 \text{ m/s}}{0.21 \text{ m}}$$
$$= 1.4 \times 10^9 \text{ Hz}$$

The frequency of the radio waves is 1.4×10^9 Hz.

Validate

Radio waves with wavelength about a fifth of a metre would, if travelling 1 m/s, vibrate about 5 times a second. With a speed of 3×10^8 m/s, they should vibrate about 15×10^8 times a second, or about 1.5×10^9 Hz.

7. Frame the Problem

- Tsunamis are waves, so the universal wave equation applies to them.
- A distance and a time are given, so we can calculate speed.

Identify the Goal

The frequency, *f*, of the tsunami.

Variables and Constants

Known	Unknown
$\lambda = 640 \text{ km}$	v
$\Delta d = 3250 \text{ km}$	f
$\Delta t = 4.6 \text{ h}$	

Strategy

km must be converted to m, so velocity can be in m/s, which is needed to get hertz. First find velocity.

Then use universal wave equation. Solve for f and substitute. $v = \frac{d}{t}$ $v = \frac{\frac{d}{t}}{\frac{3250\ 000\ \text{m}}{(4.6\ \text{h} \times \ 3600\ \text{s/h})}} = 196\ \text{m/s}$ $f = \frac{v}{\lambda}$ $f = \frac{196\ \text{m}}{\frac{196\ \text{m}}{\text{s}}} = 3.1 \times 10^{-4}\ \text{Hz}$

The frequency of the tsunami is 3.1×10^{-4} Hz.

Validate

- (a) The tsunami travelled a little over 3000 km in about $4\frac{1}{2}$ hours, so its speed should be about 700 km/h, or about 200 m/s.
- (b) A huge wavelength wave should have a very long period, so a very short frequency.

8. Frame the Problem

- Universal wave equation should apply to earthquake waves.
- A speed and wavelength are given, so we can calculate frequency.
- A new speed is given. The frequency stays the same, so there must be a new wavelength.

Identify the Goal

- (a) The frequency, *f*, of the earthquake wave.
- (b) The new wavelength after the speed change, λ_2 .

Variables and Constants

Known

Known	Unknown
$\lambda_1 = 523 \text{ km}$	f
v = 4.60 km/s	λ_2

Strategy

Solve universal wave equation for frequency and substitute.

Use universal wave equation with same frequency, new speed. Solve for λ_2 and substitute.

Distances can be left in km because both v and λ_1 use km.

(a)
$$f = \frac{v}{\lambda_1} = \frac{4.60 \text{ km/s}}{523 \text{ km}} = 8.80 \times 10^{-3} \text{ Hz}$$

(b) $\lambda_2 = \frac{v}{f} = \frac{7.50 \text{ km/s}}{8.80 \times 10^{-3} \text{ Hz}} = 852 \text{ km}$

The frequency of the slower wave is 8.80×10^{-3} Hz and the wavelength of the faster wave is 852 km.

Validate

- (a) Earthquake waves travel several kilometres per second but have wavelengths hundreds of kilometers long. Therefore they must have frequencies of about a hundredth of a km. $(8.8 \times 10^{-3} \text{ Hz is approximately } 10^{-2} \text{ Hz.})$
- (b) The faster wave has a longer wavelength.

9. Frame the Problem

- Piano string has frequency, so is a vibrating object.
- Universal wave equation should apply to piano strings.
- Speed and frequency are given, so we can calculate wavelength.
- A note one octave higher has twice the frequency.

Identify the Goal

- (a) The wavelength of middle C.
- (b) The wavelength of C one octave above middle C.

Variables and Constants

Known	Unknown
f = 256 Hz	λ_1
v = 343 m/s	λ_2

Strategy

Solve universal wave equation for wavelength and substitute.

(a)
$$\lambda_1 = \frac{v}{f} = \frac{545}{256} \frac{1}{\text{Hz}} = 1.340 \text{ m}$$

(b) (by direct calculation) $\lambda_2 = \frac{v}{f} = \frac{343 \frac{m}{s}}{2 \times 256 \text{ Hz}} = \frac{343 \frac{m}{s}}{512 \text{ Hz}} = 0.670 \text{ m}$ (by ratio : double frequency, so halve wavelength) $\lambda_2 = \frac{\lambda_1}{2} = \frac{1.340 \text{ m}}{2} = 0.670 \text{ m}$

Wavelength of C above middle C is 0.670 m.

Validate

The two methods of calculating the value of C above middle C agree.

Chapter 8 Review

Answers to Problems for Understanding

Student Textbook page 373

- **21.** The period of the pendulum is 4.0 s. Frequency is the reciprocal of the period, so the frequency will be 0.25 Hz.
- **22.** If the period of a wave is doubled, the wavelength must double, because the velocity remains the same.
- 23. Frequency is 4 Hz. Velocity is 1.78 m/s $\lambda = \frac{v}{f}$ $= \frac{1.78 \frac{m}{s}}{4 \text{ Hz}}$ = 0.44 m24. $T = \frac{1}{f}$ $= \frac{1}{60} \text{ Hz}$ $= 1.67 \times 10^{-2} \text{ s}$
- $= 1.67 \times 10^{-2} s$ $v = f\lambda$ $\lambda = \frac{v}{f}$ $= \frac{343 \text{ m}}{60 \text{ Hz}}$ = 5.72 m25. (a) $f = \frac{60}{42 s}$ = 1.429 Hz = 1.4 Hz(b) $v = f\lambda$ $= 1.429 \text{ Hz} \times 2.6 \text{ cm}$ = 3.7 m/s
- **26.** Fundamental mode of vibration occurs when a half-wavelength standing wave is present. Thus $\frac{\lambda}{2} = 1.0$ m, so $\lambda = 2.0$ m.
- $v = f\lambda$ $f = \frac{v}{\lambda}$ $= \frac{3.2 \frac{m}{s}}{2.0 \text{ m}}$ = 1.6 Hz27. $v = \frac{3700 \text{ km}}{(5.2 \text{ h} \times 3600 \frac{\text{s}}{\text{h}})}$ $= 0.20 \frac{\text{m}}{\text{s}}$ $\lambda = \frac{v}{f}$ $= \frac{0.20 \frac{\text{m}}{\text{s}}}{2.9 \times 10^{-4} \text{ Hz}}$ = 682 m $= 6.8 \times 10^2 \text{ m}$

28. First calculate the wave speed:

$$v = \frac{0.50 \text{ km}}{2.00 \text{ min}} \times \frac{1000 \frac{\text{m}}{\text{ km}}}{60 \frac{\text{s}}{\text{min}}}$$

$$= \frac{500 \text{ m}}{120 \text{ s}}$$

$$= 4.17 \frac{\text{m}}{\text{s}}$$
(a) $f = \frac{v}{\lambda}$

$$= \frac{4.17 \frac{\text{m}}{\text{s}}}{3.5 \text{ m}}$$

$$= 1.2 \text{ Hz}$$
(b) $T = \frac{1}{f}$

$$= 0.84 \text{ s}$$
29. (a) $T = \frac{120 \text{ s}}{117}$

$$= 1.0256 \text{ s}$$

$$= 1.03 \text{ s}$$
(b) % error $= \frac{(1.0256 \text{ s} - 1.000 \text{ s})}{1.000 \text{ s}} \times 100\%$

$$= 2.56\%$$
(c) After 1 year, clock will be 2.56% of a year slow, which is
2.56% × (365 days × 24 $\frac{\text{h}}{\text{day}} \times 3600 \frac{\text{s}}{\text{h}}$) = 2.56% × 3.16 × 10⁸ s
$$= 8.07 \times 10^5 \text{ s} = 224 \text{ hours} = 9.34 \text{ days}$$

(d) By shortening the string a little (square root of (1/1.0256) of the original length), the period of the pendulum can be shortened slightly.