Waves Transferring Energy

Practice Problem Solutions

Student Textbook page 341

1. Frame the Problem

- A metronome is undergoing periodic motion.
- The frequency is the number of cycles per second.
- The period is the time for one complete cycle.

Identify the Goal

There are two goals: frequency, f, and period, T.
Variables and Constants

Known	Unknown
$N=54$	f
$\Delta t=55 \mathrm{~s}$	T

Strategy
Use definition equations for frequency, $f=\frac{N}{\Delta t}$ and period $T=\frac{\Delta t}{N}$.
All needed variables are known, so substitute.
$f=\frac{54}{55 \mathrm{~s}}=0.98 \mathrm{~Hz}$
$T=\frac{55 \mathrm{~s}}{54}=1.02 \mathrm{~s}$
The frequency is 0.98 Hz and the period is 1.02 s .

Validate

The metronome takes 55 s to beat 54 times, so one beat should take slightly longer than a second. It is beating at slightly less than one beat per second.

2. Frame the Problem

- Butterflies wings are undergoing periodic motion.
- Frequencies are given in beats per minute but are asked for in hertz.
- Hertz is cycles per second, so minute must be converted to 60 s .

Identify the Goal

The range of frequency in hertz.

Variables and Constants

Known	Unknown
$f_{1}=450$ beats $/ \mathrm{min}$	f_{I}
$f_{h}=650$ beats $/ \mathrm{min}$	f_{h}

Strategy

1 minute $=60 \mathrm{~s}$
Divide by seconds per minute
$f_{1}=450$ beats $/ \mathrm{min}=\frac{450 \text { beats }}{60 \mathrm{~s}}=7.50 \mathrm{~Hz}$
$f_{\mathrm{h}}=650$ beats $/ \mathrm{min}=\frac{650 \text { beats }}{60 \mathrm{~s}}=10.8 \mathrm{~Hz}$

The range of wing-beating frequencies for butterflies is from 7.50 Hz to 10.8 Hz .
Validate
600 times a minute, inside the given range, is about 10 times a second. The range of frequencies should be from a little below 10 times a second to a little above 10 times a second.

3. Frame the Problem

- A watch spring undergoes periodic motion, so has a frequency.
- The frequency is the number of cycles per second.

Identify the Goal

The time for 100 vibrations
Variables and Constants
Known

Unknown

$f=3.58 \mathrm{~Hz}$
Δt
$N=100$

Strategy

Use definition equations for frequency, $f=\frac{N}{\Delta t}$
Solve equation for Δt and substitute.
$\Delta t=\frac{N}{f}=\frac{100}{3.58 \mathrm{~Hz}}=29.7 \mathrm{~s}$
The time for 100 vibrations is 29.7 s .

Validate

With a frequency of a little less than 4 oscillations per second, one oscillation should take a little more than $\frac{1}{4} s=0.25 \mathrm{~s}$. Therefore, it should take a little more than $\frac{1}{4} \times 100 \mathrm{~s}$, or 25 s , to make 100 oscillations.

4. Frame the Problem

- Swinging is a periodic motion.
- The frequency is the number of cycles per second.
- The period is the time for one complete cycle.

Identify the Goal

There are two goals: frequency, f, and period, T.
Variables and Constants

Known	Unknown
$N=12$	f
$\Delta t=30.0 \mathrm{~s}$	T

Strategy

Use definition equations for frequency, $f=\frac{N}{\Delta t}$ and period $T=\frac{\Delta t}{N}$.
All needed variables are known, so substitute.
$f=\frac{12}{30 \mathrm{~s}}=0.40 \mathrm{~Hz}$
$T=\frac{30 \mathrm{~s}}{12}=2.5 \mathrm{~s}$
The frequency of the swinging is 0.40 Hz and the period of swing is 2.5 s .

Validate

At 12 swings in 30 seconds, the child is taking over 2 s for each swing, and making less than half a swing per second.

Practice Problem Solutions

Student Textbook page 349-350

5. Frame the Problem

- A wave travelling in a spring has wavelength, frequency, and speed.
- The universal wave equation applies.
- Given a wave's speed, use $v=\frac{\Delta d}{\Delta t}$ to calculate the time to cover a distance.

Identify the Goal

The speed, v, of the wave and the time, Δt, to cover a given distance.

Variables and Constants

Known	Unknown
$\Delta d=6.0 \mathrm{~m}$	v
$f=10.0 \mathrm{~Hz}$	Δt
$\lambda=0.75 \mathrm{~m}$	

Strategy

Convert wavelength from cm to m .
Use universal wave equation to find the speed of the wave.
Use $v=\frac{\Delta d}{\Delta t}$ to find the time.

$$
\begin{aligned}
v & =f \lambda \\
& =10.0 \mathrm{~Hz} \times 0.75 \mathrm{~m} \\
& =7.5 \mathrm{~m} / \mathrm{s} \\
v & =\frac{\Delta d}{\Delta t} \\
\Delta t & =\frac{\Delta d}{v} \\
& =\frac{6.0 \mathrm{~m}}{7.5 \mathrm{~m} / \mathrm{s}} \\
& =0.67 \mathrm{~s}
\end{aligned}
$$

The speed of the wave in the spring is $7.5 \mathrm{~m} / \mathrm{s}$ and the time to travel down the spring is 0.67 s .

Validate

The wavelength is three quarters of a metre so, if waves were continuously being sent, about 8 waves should fit in the spring. At 10 waves per second, it should take less than a second for the waves to travel down the spring, and the waves should be travelling at greater than the length of the spring per second.

6. Frame the Problem

- Radio waves have wavelength, frequency, and speed.
- The frequency is related to wavelength and speed by the universal wave equation.

Identify the Goal

The frequency, f, of the waves.

Variables and Constants

$$
\begin{array}{ll}
\text { Known } & \text { Un } \\
\lambda=21 \mathrm{~cm}=0.21 \mathrm{~m} & f \\
v=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s} &
\end{array}
$$

Unknown

Strategy

Convert wavelength from cm to m .
Use universal wave equation.
Solve for f and substitute.

$$
\begin{aligned}
f & =\frac{v}{\lambda} \\
& =\frac{3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}}{0.21 \mathrm{~m}} \\
& =1.4 \times 10^{9} \mathrm{~Hz}
\end{aligned}
$$

The frequency of the radio waves is $1.4 \times 10^{9} \mathrm{~Hz}$.

Validate

Radio waves with wavelength about a fifth of a metre would, if travelling $1 \mathrm{~m} / \mathrm{s}$, vibrate about 5 times a second. With a speed of $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$, they should vibrate about 15×10^{8} times a second, or about $1.5 \times 10^{9} \mathrm{~Hz}$.

7. Frame the Problem

- Tsunamis are waves, so the universal wave equation applies to them.
- A distance and a time are given, so we can calculate speed.

Identify the Goal

The frequency, f, of the tsunami.
Variables and Constants

Known	Unknown
$\lambda=640 \mathrm{~km}$	v
$\Delta d=3250 \mathrm{~km}$	f
$\Delta t=4.6 \mathrm{~h}$	

Strategy

km must be converted to m , so velocity can be in m / s, which is needed to get hertz. First find velocity.
Then use universal wave equation.
Solve for f and substitute.

$$
\begin{aligned}
& v=\frac{d}{t} 3250000 \mathrm{~m} \\
& v=\frac{196 \mathrm{~m} / \mathrm{s}}{(4.6 \mathrm{~h} \times 3600 \mathrm{~s} / \mathrm{h})}=196 \\
& f=\frac{v}{\lambda} \\
& f=\frac{196 \frac{\mathrm{~m}}{\mathrm{~s}}}{640000 \mathrm{~m}}=3.1 \times 10^{-4} \mathrm{~Hz}
\end{aligned}
$$

The frequency of the tsunami is $3.1 \times 10^{-4} \mathrm{~Hz}$.
Validate
(a) The tsunami travelled a little over 3000 km in about $4 \frac{1}{2}$ hours, so its speed should be about $700 \mathrm{~km} / \mathrm{h}$, or about $200 \mathrm{~m} / \mathrm{s}$.
(b) A huge wavelength wave should have a very long period, so a very short frequency.

8. Frame the Problem

- Universal wave equation should apply to earthquake waves.
- A speed and wavelength are given, so we can calculate frequency.
- A new speed is given. The frequency stays the same, so there must be a new wavelength.

Identify the Goal

(a) The frequency, f, of the earthquake wave.
(b) The new wavelength after the speed change, λ_{2}.

Variables and Constants

Known
$\lambda_{1}=523 \mathrm{~km}$
$v=4.60 \mathrm{~km} / \mathrm{s}$

Unknown
f
λ_{2}

Strategy

Solve universal wave equation for frequency and substitute.
Use universal wave equation with same frequency, new speed.
Solve for λ_{2} and substitute.
Distances can be left in km because both v and λ_{1} use km .
(a) $f=\frac{v}{\lambda_{1}}=\frac{4.60 \mathrm{~km} / \mathrm{s}}{523 \mathrm{~km}}=8.80 \times 10^{-3} \mathrm{~Hz}$
(b) $\lambda_{2}=\frac{v}{f}=\frac{7.50 \mathrm{~km} / \mathrm{s}}{8.80 \times 10^{-3} \mathrm{~Hz}}=852 \mathrm{~km}$

The frequency of the slower wave is $8.80 \times 10^{-3} \mathrm{~Hz}$ and the wavelength of the faster wave is 852 km .

Validate
(a) Earthquake waves travel several kilometres per second but have wavelengths hundreds of kilometers long. Therefore they must have frequencies of about a hundredth of a km. $\left(8.8 \times 10^{-3} \mathrm{~Hz}\right.$ is approximately $10^{-2} \mathrm{~Hz}$. $)$
(b) The faster wave has a longer wavelength.

9. Frame the Problem

- Piano string has frequency, so is a vibrating object.
- Universal wave equation should apply to piano strings.
- Speed and frequency are given, so we can calculate wavelength.
- A note one octave higher has twice the frequency.

Identify the Goal

(a) The wavelength of middle C .
(b) The wavelength of C one octave above middle C .

Variables and Constants

Known

$f=256 \mathrm{~Hz}$
$v=343 \mathrm{~m} / \mathrm{s}$

Unknown
λ_{1}
λ_{2}

Strategy

Solve universal wave equation for wavelength and substitute.
(a) $\lambda_{1}=\frac{v}{f}=\frac{343 \frac{\mathrm{~m}}{\mathrm{~s}}}{256 \mathrm{~Hz}}=1.340 \mathrm{~m}$

Wavelength of middle C is 1.34 m
(b) (by direct calculation)
$\lambda_{2}=\frac{v}{f}=\frac{343 \frac{\mathrm{~m}}{\mathrm{~s}}}{2 \times 256 \mathrm{~Hz}}=\frac{343 \frac{\mathrm{~m}}{\mathrm{~s}}}{512 \mathrm{~Hz}}=0.670 \mathrm{~m}$
(by ratio : double frequency, so halve wavelength)
$\lambda_{2}=\frac{\lambda_{1}}{2}=\frac{1.340 \mathrm{~m}}{2}=0.670 \mathrm{~m}$
Wavelength of C above middle C is 0.670 m .
Validate
The two methods of calculating the value of C above middle C agree.

Chapter 8 Review

Answers to Problems for Understanding

Student Textbook page 373

21. The period of the pendulum is 4.0 s . Frequency is the reciprocal of the period, so the frequency will be 0.25 Hz .
22. If the period of a wave is doubled, the wavelength must double, because the velocity remains the same.
23. Frequency is 4 Hz . Velocity is $1.78 \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
\lambda & =\frac{v}{f} \\
& =\frac{1.78 \frac{\mathrm{~m}}{\mathrm{~s}}}{4 \mathrm{~Hz}} \\
& =0.44 \mathrm{~m}
\end{aligned}
$$

24. $T=\frac{1}{f}$

$$
\begin{aligned}
& =\frac{1}{60} \mathrm{~Hz} \\
& =1.67 \times 10^{-2} \mathrm{~s} \\
v & =f \lambda \\
\lambda & =\frac{v}{f} \\
& =\frac{343 \frac{\mathrm{~m}}{\mathrm{~s}}}{60 \mathrm{~Hz}} \\
& =5.72 \mathrm{~m}
\end{aligned}
$$

25. (a) $f=\frac{60}{42 \mathrm{~s}}$

$$
\begin{aligned}
& =1.429 \mathrm{~Hz} \\
& =1.4 \mathrm{~Hz}
\end{aligned}
$$

(b) $v=f \lambda$

$$
=1.429 \mathrm{~Hz} \times 2.6 \mathrm{~cm}
$$

$$
=3.7 \mathrm{~m} / \mathrm{s}
$$

26. Fundamental mode of vibration occurs when a half-wavelength standing wave is present. Thus $\frac{\lambda}{2}=1.0 \mathrm{~m}$, so $\lambda=2.0 \mathrm{~m}$.

$$
v=f \lambda
$$

$f=\frac{v}{\lambda}$

$$
\begin{aligned}
& =\frac{3.2 \mathrm{~m}}{\mathrm{~s}} \\
& =1.6 \mathrm{~m} \\
& =1 . \mathrm{Hz}
\end{aligned}
$$

27. $v=\frac{3700 \mathrm{~km}}{\left(5.2 \mathrm{~h} \times 3600 \frac{\mathrm{~s}}{\mathrm{~h}}\right)}$
$=0.20 \frac{\mathrm{~m}}{\mathrm{~s}}$
$\lambda=\frac{v}{f}$
$=\frac{0.20 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}{2.9 \times 10^{-4} \mathrm{~Hz}}$
$=682 \mathrm{~m}$
$=6.8 \times 10^{2} \mathrm{~m}$
28. First calculate the wave speed:

$$
\begin{aligned}
& v=\frac{0.50 \mathrm{~km}}{2.00 \mathrm{~min}} \times \frac{1000 \frac{\mathrm{~m}}{\mathrm{~km}}}{60 \frac{\mathrm{~s}}{\min }} \\
& =\frac{500 \mathrm{~m}}{120 \mathrm{~s}} \\
& =4.17 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \text { (a) } f=\frac{v}{\lambda} \\
& =\frac{4.17 \frac{\mathrm{~m}}{\mathrm{~s}}}{3.5 \mathrm{~m}} \\
& =1.2 \mathrm{~Hz}
\end{aligned}
$$

(b) $T=\frac{1}{f}$

$$
=0.84 \mathrm{~s}
$$

29. (a) $T=\frac{120 \mathrm{~s}}{117}$

$$
\begin{aligned}
& =1.0256 \mathrm{~s} \\
& =1.03 \mathrm{~s}
\end{aligned}
$$

(b) $\quad \%$ error $=\frac{(1.0256 s-1.000 s)}{1.000 s} \times 100 \%$

$$
=2.56 \%
$$

(c) After 1 year, clock will be 2.56% of a year slow, which is

$$
\begin{aligned}
& 2.56 \% \times\left(365 \text { days } \times 24 \frac{\mathrm{~h}}{\text { day }} \times 3600 \frac{\mathrm{~s}}{\mathrm{~h}}\right)=2.56 \% \times 3.16 \times 10^{8} \mathrm{~s} \\
& \quad=8.07 \times 10^{5} \mathrm{~s}=224 \text { hours }=9.34 \text { days }
\end{aligned}
$$

(d) By shortening the string a little (square root of $(1 / 1.0256)$ of the original length), the period of the pendulum can be shortened slightly.

