
Chapter 9

Sound Waves and
Electromagnetic Radiation

Practice Problem Solutions
Student Textbook page 390

1. Frame the Problem
- The speed of sound can be calculated from the temperature.
- At a temperature of 0˚C and a pressure of 101 kPa, the speed of sound in air is 

331 m/s.
- For each 1˚C rise in temperature, the speed of sound increases by 0.59 m/s.

Identify the Goal
The speed of sound, v

Variables and Constants
Known Unknown
(a) TC = −15˚C v

(b) TC = 15˚C

(c) TC = 25˚C

(d) TC = 33˚C

Strategy
Use the formula for the velocity (speed) of sound in air.
Substitute the known temperature and calculate the speed.
(a) v = 331 + 0.59 TC

v = 331 m/s + 0.59 m/s
˚C

(−15˚C)
v = 322 m/s

The speed of sound is 322 m/s or 3.2 × 102 m/s.

Validate
The temperature is a little below zero, so the speed of sound should be a little less
than 331 m/s.
Similarly,
(b) speed of sound = 331.3 m/s + 0.59 m/s

˚C
× 15˚C = 340 m/s = 3.4 × 102 m/s

(c) speed of sound = 331.3 m/s + 0.59 m/s
˚C

× 25˚C = 346 m/s = 3.5 × 102 m/s

(d) speed of sound = 331.3 m/s + 0.59 m/s
˚C

× 33˚C = 350 m/s = 3.5 × 102 m/s

2. Frame the Problem
- The speed of sound depends on air temperature.
- If you know the speed, you should be able to calculate the temperature.

Identify the Goal
The goal is the temperature in ˚C.
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Variables and Constants
Known Unknown
(a) v = 352 m/s TC

(b) v = 338 m/s

(c) v = 334 m/s

(d) v = 319 m/s

Strategy
Use the temperature equation and solve for TC.
(a) 352 m/s = 331 m/s + 0.59TC

0.59TC = 352 m/s − 331 m/s
= 21 m/s

TC = 21 m/s
0.59 m/s

˚C

= 36˚C
The air temperature is 36˚C.

Validate
Room air temperature has a speed of sound of about 344 m/s. A speed of 352 m/s
requires a temperature a little higher than room temperature.
Similarly:
(b) TC = (338 m/s − 331 m/s)

0.59 m/s
˚C

= 12˚C

(c) TC = (334 m/s − 331 m/s)

0.59 m/s
˚C

= 5˚C

(d) TC = (318 m/s − 331 m/s)

0.59 m/s
˚C

= −22˚C

3. (a) Frame the Problem
- Sound travels to the iceberg and back.
- The time for the echo depends on the distance to the iceberg and the speed of

sound.
- The sound’s speed depends on the temperature, which is given.

Identify the Goal
The distance to the iceberg

Variables and Constants
Known Unknown
∆t = 3.8 s ∆d

TC = −12˚C

Strategy
Use the temperature and speed of sound formula to find the speed of sound.
Use v = ∆d

∆t
to find the distance.

The sound travelled to the iceberg and back, so distance to iceberg is ∆d
2

.
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v = 331 + 0.59 TC

= 331 m/s + 0.59 m/s
˚C

(−12˚C)
= 333.5 m/s

v = ∆d
∆t

∆d = v∆t
= 333.5 m/s × 3.8 s
= 1267 m

distance to iceberg = ∆d
2

= 633 m
The distance to iceberg is 6.3 × 102 m.

Validate
Sound travels about 1 km every 3 seconds. The one-way trip took a little less than 
2 seconds, so the iceberg is a little less than 1 km away.

(b) We have accounted for the temperature. Perhaps the atmospheric pressure was not
101 kPa. If the weather was foggy, the speed of sound in very humid air may dif-
fer from the standard 331 m/s + 0.59 TC.

4. Frame the Problem
- Sound travels to the fish and back.
- The time for the echo depends on the distance to the fish and the speed of sound in

water, 1482 m/s in a freshwater lake.

Identify the Goal
The distance to the fish

Variables and Constants
Known Unknown
D = 35 m ∆t

v = 1482 m/s

Strategy
Double the distance to the fish to find the round trip time of the sound pulse:
∆d = 2D.

Use v = ∆d
∆t

to find the time.

∆d = 2 × D
= 70 m

v = ∆d
∆t

∆t = ∆d
v

= 70 m
1482 m/s

= 0.047 s
The time delay was 0.047 s.

Validate
Sound travels very quickly in water, over one kilometre per second. The time delay
should be very short.
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5. Frame the Problem
- Sound travels to the far wall of the stadium and back.
- The time for the echo depends on the distance to the end of the stadium and the

speed of sound.
- The sound’s speed depends on the temperature, which is given.

Identify the Goal
Distance to the far end of the stadium.

Variables and Constants
Known Unknown
∆t = 1.2 s ∆d

TC = 12˚C l

Strategy
Use the temperature and speed of sound formula to find the speed of sound.
Use v = ∆d

∆t
to find the round trip distance.

Divide ∆d by 2 to calculate length of stadium.

v = 331 m/s + 0.59 TC

= 331 m/s + 0.59 m/s
˚C

(12˚C)
= 338.1 m/s

v = ∆d
∆t

∆d = v∆t
= 338.1 m/s × 1.2 s
= 405.7 m

l = ∆d
2

= 202.8 m
The length of the stadium is 2.0 × 102 m.

Validate
Sound travels about 1 km every 3 s. The one-way trip took a little over half a second,
so the length of the stadium should be a little over one sixth of a kilometre.

6. (a) Frame the Problem
- Time of travel depends on speed of sound and distance. Distance is given.
- The speed of sound depends on the temperature, which is given.
v = ∆d

∆t
The time of flight, ∆t, of the sound

Variables and Constants
Known Unknown
TC = 22˚C v

∆d = 2.0 km = 2000 m ∆t

Strategy
Use the temperature and speed of sound formula to find the speed of sound.
Use v = ∆d

∆t
to find the time.

Use distance in metres.
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v = 331 m/s + 0.59 TC

= 331 m/s + 0.59 m/s
˚C

(22˚C)
= 344.0 m/s

v = ∆d
∆t

∆t = ∆d
v

= 2000 m
344 m/s

= 5.8 s
Sound would take 5.8 s to travel 2.0 km at 22˚C.

Validate
Sound travels about 1 km every 3 s. It would take about 6 s to travel 2 km.
(b) Similarly, if speed is 3.0 × 108 m/s, time to travel 2 km would be

v = ∆d
∆t

∆t = ∆d
v

= 2000 m
3.0 × 108 m/s

= 6.7 × 10−7 s

(c) Frame the Problem
- After the lightning hits the church, the light travels 2 km to your eyes.
- The sound of the thunder travels 2 km to your ears.
- If 8 s elapses in between seeing the lightning hit the church and hearing the 

thunder, then the actual time of travel of the sound was 8 s plus the time it took for
light to reach your eyes. Part (b) tells us that this time is so short we can neglect it.

Identify the Goal
The distance, ∆d, to the church

Variables and Constants
Known Unknown
TC = 22˚C ∆d

v = 344 m/s (from part (a)

∆t = 8.0 s

Strategy
Since temperature is the same, use speed of sound from part (a).
Use v = ∆d

∆t
to find the distance.

∆d = v∆t
= 340 m/s × 8.0 s
= 2620 m

The church was 2.6 km away.

Validate
Sound takes about 3 s to cover 1 km. So in 8 s, the sound would travel a little less
than 3 km.
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Practice Problem Solutions
Student Textbook page 400

7. Frame the Problem
- Make a sketch of the problem. Refer to the student textbook Model Problem “Index

of Refraction”
- The angles of incidence and refraction are known
- The index of refraction relates the angles of incidence and refraction when the 

incident medium is air
- Air is the incident medium

Identify the Goal
The index of refraction of an unknown material
Identify the unknown material

Variables and Constants
Known Unknown
incident medium: air n

θi = 59˚ material

θR = 49˚

Strategy Calculations
Use Snell’s law. sin θi

sin θR
= a constant

Since the incident medium is air, the n = sin θi

sin θR
constant is the index of refraction, n, 
of the liquid.

Substitute the known values. n = sin 59˚
sin 41˚

n = 1.3065
The unknown index of refraction is 1.31. Accordingly, the material is ice. 
(see Table 9.2)

Validate
The absence of units is in agreement with the unitless nature of the index of refrac-
tion. The value is between one and two, which is very reasonable for an index of
refraction.

8. Frame the Problem
- Make a sketch of the problem.
- The angles of incidence are known.
- The refractive medium is known.
- The index of refraction relates the angles of incidence and refraction when the 

incident medium is air.
- Air is the incident medium.

Identify the Goal
The angle of refraction in zircon crystal

Variables and Constants
Known Unknown
Incident medium: air θR

Refractive medium: zircon

θi = 72.0˚

n = 1.92 (from Table 9.2)
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Strategy Calculations
Use Snell’s constant. sin θi

sin θR
= a constant

Since the incident medium is air, the 
constant is the index of refraction, n, sin θR = sin θi

n
of zircon.

Substitute the known values. sin θR = sin 72˚
1.92

Rearrange the equation to solve for θR. θR  = sin-1 (0.4953)

The angle of refraction is 29.7˚. θR = 29.7˚

Validate
The angle is stated in degrees. The angle of refraction is less than the angle of 
incidence. This makes sense because when light enters a denser medium, it slows
down and bends toward the normal.

9. Frame the Problem
- Make a sketch of the problem. Refer to the student textbook model problem on

page 511.
- The angles of refraction is known.
- The refractive medium is known.
- The index of refraction relates the angles of incidence and refraction when the 

incident medium is air.
- Air is the incident medium.

Identify the Goal
The angle of incidence in ethyl alcohol

Variables and Constants
Known Unknown
Incident medium: air θi

Refractive medium: 
ethyl alcohol

θR = 35˚

n = 1.362 (from Table 9.2)

Strategy Calculations
Use Snell’s constant. sin θi

sin θR
= a constant

Since the incident medium is air, the sin θi

sin θR
= n

constant is the index of refraction, n, 
of zircon.

Rearrange the equation to solve for θR. sin θi = n sin θR

Substitute the known values. sin θi = 1.362 × sin 35˚

The angle of incidence is index 51˚. θi = sin−1(0.0781)
θi = 51.4˚

Validate
The angle is stated in degrees. The angle of incidence is greater than the angle of
refraction. This is realistic because when light enters a denser medium, it slows down
and bends toward the normal.
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Practice Problem Solutions
Student Textbook page 405

10. Frame the Problem
- Make a sketch of the problem.
- Light travels from air, an optically less dense medium, into ethyl alcohol, an 

optically more dense medium.
- The refracted ray should bend toward the normal line.
- You can use Snell’s law to determine the extent of the bending of the refracted ray.
Identify the Goal
The angle of refraction, θR, in ethyl alcohol

Variables and Constants
Known Implied Unknown
θi = 60˚ ni = 1.00 θR

nR = 1.362

Strategy Calculations
Use Snell’s law to solve problem. ni sin θi = nR sin θR

Rearrange the equation to solve for θR. sin θR = ni sin θi

nR

θR = sin−1( ni sin θi

nR

)

Substitute the known values. θR = sin−1( 1.00(sin 60.0˚)
1.362

)

θR = 39.4899
The angle of refraction is 39.5˚.

Validate
The angle is stated in degrees. The angle of refraction is less than the angle of 
incidence. This is realistic because when light enters a denser medium it slows down
and bends towards the normal.

11. Frame the Problem
- Make a sketch of the problem. Refer to the model problem “Finding the Angle of

Refraction” in the student textbook. 
- Light travels from ethyl alcohol, an optically more dense medium, into air, an opti-

cally less dense medium. 
- The refracted ray should bend away from the normal line (meaning also that the

angle of the incident ray should be less than the angle of the refracted ray).
- You can use Snell’s law to determine the extent of the bending of the refracted ray. 

Identify the Goal
The angle of incidence, θi, from ethyl alcohol into air. 

Identify the Variables
Known Implied Unknown
θR = 44.5° ni = 1.362 θi

nR = 1.00
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Develop a Strategy Calculations
Use Snell’s law to solve the problem.

The angle of incidence is 31.0°.

Validate the Solution
The angle is in degrees as required. It is less than the angle of refraction, which is
expected for situations when a light beam travels from a medium of higher index to
one of lower index (as the light enters the lower density medium, it travels further
away from the normal). So, the answer is reasonable. 

Practice Problem Solutions
Student Textbook page 410

12. Frame the Problem
- Make a sketch of the problem. Label all of the media, angles and rays. See model

problem on page 536 of the student textbook.
- Light is travelling from an optically more dense medium to an optically less dense

medium.
- The critical angle of the incidence corresponds to an angle of refraction of 90˚.
- The needed indices of refraction are listed in Table 9.2.

Identify the Goal
Calculate the critical angle, θc for ethyl alcohol

Variables and Constants
Implied Unknown
nair = 1.00 θc(ethyl alcohol)

nethyl alcohol = 1.362

Strategy Calculations
Use Snell’s law. ni sin θi = nR sin θR

The critical angle of incidence, ni sin θ c(ethyl alcohol) = nR sin 90˚
θ c(ethyl alcohol), occurs when the angle of 
refraction is exactly 90˚.

θi = θ c(ethyl alcohol) and θR = 90˚.

Rearrange for θ c(ethyl alcohol). θ c(ethyl alcohol) = sin−1 nR sin 90˚
ni

θ c(ethyl alcohol) = sin−1( 1.00(1.00)
1.362

)

θ c(ethyl alcohol) = 47.2408˚

The critical angle for ethyl alcohol is 47.2˚.
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Validate
The angle of incidence is between 0˚ and 90˚.

13. Frame the Problem
- Make a sketch of the problem like the diagram on page 536 of the student text-

book. Label all of the media, angles and rays.
- Light is travelling from an optically more dense medium to an optically less dense

medium (in this case plastic to water).
- The critical angle of the incidence corresponds to an angle of refraction of 90˚.
- The needed indices of refraction are listed in Table 9.2.

Identify the Goal
Calculate the critical angle, θc for plastic if is immersed in water.

(a) calculate nplastic

(b) calculate θ c(plastic)

Variables and Constants
Known Implied Unknown
nair = 1.00 θc(air) = 40˚ nplastic

nwater = 1.333 θc(plastic)

θwater = 90˚

Strategy Calculations
Use Snell’s law. ni sin θi = nR sin θR

The critical angle of incidence, θc(plastic), ni sin θc(plastic) = nR sin 90˚
occurs when the angle of refraction is 
exactly 90˚.

θi = θc(plastic) and θR = 90˚.

nR = nair

Rearrange for ni = nplastic ni = nR sin 90˚
sin θc(plastic)i

ni = 1.00(1.00)
sin 40˚

ni = 1.555

The optical density (index of refraction) 
for the plastic is 1.556.

Use Snell’s law to solve for the angle of ni sin θi = nR sin θR

incidence from the plastic. 

ni = nplastic, θi = θc(plastic)

nR = nwater, θR = θwater = 90˚

Rearrange for θi = θc(plastic) θc(plastic) = sin−1( nR sin θR

ni

)

θc(plastic) = sin−1( 1.333 sin 90˚
1.556

)

θc(plastic) = 58.9˚

The critical angle for the plastic, when it is immersed in water, is 58.9˚.

Validate
The critical angle for the plastic, when it is immersed in water, is greater than the
critical angle for plastic immersed in air. This is realistic because the change in speed
of the mediums is less, meaning the light will not bend as drastically when moving
from one medium to the other.
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14. Frame the Problem
- Make a sketch of the problem like the diagram on page 409 of the student text-

book. Label all of the media, angles and rays.
- Light is travelling from an optically more dense medium to an optically less dense

medium (in this case core to cladding).
- The critical angle of the incidence corresponds to an angle of refraction of 90˚.
- The needed indices of refraction are listed in Table 9.2.

Identify the Goal
Calculate the critical angle between the core-cladding interface

Variables and Constants
Implied Unknown
ncore = 1.50 θc(core)

ncladding = 1.47

θR(cladding) = 90˚

Strategy Calculations
Use Snell’s law. ni sin θi = nR sin θR

The critical angle of incidence, θc(core), ni sin θc(core) = nR sin 90˚
occurs when the angle of refraction is 
exactly 90˚.

θi = θc(core) and θR = 90˚.

nR = ncladding

Rearrange for , θi = θc(core) θc(core) = sin−1( nR sin 90˚
ni

)

Substitute in for the values. θc(core) = sin−1( 1.47(1.00)
1.50

)

θc(core) = 78.5˚
The critical angle for the plastic, when it is immersed in water, is 78.5˚.

Validate
The critical angle for the core-cladding interface is quite high. This is realistic because
optical fibres need to trap the maximum amount of light.

15. Frame the Problem
- Make a sketch of the problem. Specifically draw a triangle to show the distance

away from the pools edge (across the top), the depth of the eye (along the side) 
and the angle from the eye to the surface of the water. This will represent the 
critical angle.

- Light is travelling from an optically more dense medium to an optically less dense
medium (in this case, water to air).

- The critical angle of the incidence corresponds to an angle of refraction of 90˚.
- The needed indices of refraction are listed in Table 9.2.

Identify the Goal
(a) Calculate the critical angle, θc, for light passing from water to air.

(b) Calculate the depth of the eye.

Variables and Constants
Implied Known Unknown
nair = 1.00 distance from edge = 3.0 m θc(water)

nwater = 1.333 d

θwater = 90˚
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Strategy Calculations
Use Snell’s law to solve for the ni sin θi = nR sin θR

critical angle.

The critical angle of incidence, θc(water), ni sin θc(cwater) = nR sin 90˚
occurs when the angle of refraction is 
exactly 90˚.

θi = θc(water) and θR = 90˚

nR = nair

Rearrange for θi and substitute in 
the values.

The critical angle is 48.6˚.

Use the critical angle to find the angle in tan θ = depth
distance from edge

the trig. triangle. This is the angle between 
the line your eye makes with the edge of 
the pool and the surface of the water.

Use trigonometry to solve for the depth.

Rearrange equation to solve for depth. depth = tan θ (distance from edge)

Substitute in for values. depth = tan 48.6˚ (distance from edge)
depth = 2.6 m

The eye must be 2.6 m below the surface for total internal reflection to occur.

Practice Problem Solutions
Student Textbook page 421

16. Frame the Problem
- The pipe and cylinder form closed air columns.
- The distance between antinodes is λ

2
.

Identify the Goal
(a) the wavelength, λ, of the sound
(b) the next resonance length, L3

Variables and Constants
Known Unknown
L1 = 17 cm λ
L2 = 51 cm L3

Strategy
The difference between L2 and L1 is half of the wavelength of the sound.
Add another half wavelength to calculate the next resonance length.
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(a) ∆l = l2 − l1
= 51 cm − 17 cm
= 34 cm

λ = 2L
= 2 × 34 cm
= 68 cm

(b) l3 = l2 + ∆l
= 51 cm + 34 cm
= 85 cm

The wavelength is 68 cm, and the next resonance length is 85 cm.

Validate
The third resonance should be at 5λ

4
. So the third resonance should be

(5 × 68 cm)
4

= 85 cm, as found in part (b).

17. Frame the Problem
- In closed air columns, the first resonance length is λ

4
. The subsequent resonances are

λ
2

apart.
- In open air columns, first resonance length is λ

2
. The next resonances are λ

2
apart.

- The first resonance is given, so λ can be calculated in each case.

Identify the Goal
The first three resonances for (a) a closed air column and (b) an open air column

Variables and Constants
Known Unknown
L1 = 32 cm L2

L3

Strategy
Calculate the wavelength from the first resonance length, then keep adding half the
wavelength to find the second and third resonance lengths.

(a) L1 = 32 cm
for closed air column, λ = 4L1

= 4 × 32 cm
= 128 cm

1
2

λ = 64 cm
L2 = 32 cm + 64 cm

= 96 cm
L3 = 96 cm + 64 cm

= 160 cm
The second and third resonance lengths are 96 cm and 160 cm.

Validate
The third resonance length should be at 5λ

4
= 1.25 × 128 cm = 160 cm
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(b) L1 = 32 cm
for open air column, λ = 2L1

= 2 × 32 cm
= 64 cm

1
2

λ = 32 cm
L2 = 32 cm + 32 cm

= 64 cm
L3 = 64 cm + 32 cm

= 96 cm
The second and third resonance lengths are 64 cm and 96 cm.

Validate
The third resonance length should be at 3λ

2
= 1.5 × 64 cm = 96 cm

18. Frame the Problem
- The problem relates to a closed air column.
- Resonances are at λ

4
, 3λ

4
, and 5λ

4
- The third resonance is given, so we can calculate the others.

Variables and Constants
Known Unknown
L3 = 95 cm λ

L1

L2

Strategy
From the third resonance length, calculate λ.
Calculate the other resonance lengths using λ.
(a) l3 = 95 cm

for closed air column, 5
4

λ = L3

= 95 cm

Therefore λ = 4
5

× 95 cm
= 76 cm

L1 = 1
4

× 76 cm
= 19 cm

L2 = 3λ
4

= 3
4

× 76 cm
= 57 cm

Validate
For a closed air column, third resonance length should be
L1 + λ = 19 cm + 76 cm = 95 cm as given.

19. Frame the Problem
- The problem involves an open air column.
- Resonances are at λ

2
, λ, and 3λ

2
.

- The second resonance is given, so we can calculate the others.

227Chapter 9 Sound Waves and Electromagnetic Radiation • MHR



Variables and Constants
Known Unknown
L2 = 95 cm λ

L1

L3

Strategy
From the second resonance length, calculate λ.
Calculate the other resonance lengths using λ.

(a) l2 = 64 cm
for open air column, λ = L2

therefore λ = 64 cm
L1 = 1

2
× 64 cm

= 32 cm
L3 = 3

2
λ

= 96 cm

Validate
For an open air column, the third resonance should be triple the first:
3 × 32 cm = 96 cm.

20. (a) Frame the Problem
- The problem involves an open air column.
- The fundamental is L1 = λ

2
, so length of pipe depends on λ.

- The temperature TC determines speed of sound, v.
- v and f determine λ, which determines length L1.

Identify the Goal
The length of the pipe, L1, the first resonant length of the open air column

Variables and Constants
Known Unknown
f = 128 Hz L1

TC = 22˚C v

Strategy
Use temperature to find velocity.
Use the wave equation to find λ.
Use λ to find the first resonant length L1, the length of the pipe.
v = 331 m/s + 0.59(TC)

= 344 m/s
λ = v

f

= 344 m/s
128 Hz

= 2.69 m
l1 = 1

2
λ

= 1.34 m
The length of the pipe will be 1.34 m.

Validate
The speed of sound is about 340 m/s. A wavelength of a 128 Hz note is about
(340 m/s)
(128 Hz)

or between 2.5 m and 3 m. The length of the open air column should be
between 1.25 m and 1.5 m.
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(b) Frame the Problem
- This problem involves a closed air column.
- The length of pipe and speed of sound are given (from part (a)).
- The length of pipe determines wavelength.
- The wavelength and speed of sound determine frequency.

Identify the Goal
Frequency, f, of note

Variables and Constants
Known Unknown
L1 = 1.34 m λ
v = 344 m/s f

Strategy
The length of the column is L1 = λ

4
, so multiply length by 4 to calculate λ.

Use the wave equation to calculate frequency.
L1 = 1.34 m
λ = 4 × L1

= 5.36 m
v = f λ
f = v

λ

= 344 m/s
5.36 m

= 64 Hz
The organ pipe will produce a 64 Hz tone.

Validate
The same air column as in part (a) now holds a note whose wavelength is four times
the length of the column, not twice the length. The frequency should therefore be
half the frequency of the note in part (a).

Practice Problem Solutions
Student Textbook page 427

21. Frame the Problem
- This problems involves an open air column with antinodes at each end.
- The harmonics of open air column are integer multiples of the resonant frequency.

Identify the Goal
The frequencies of the second and third harmonics,f2 and f3

Variables and Constants
Known Unknown
f1 = 256 Hz f2

f3

Strategy

Multiply fundamental frequency by 2 and 3
f2 = f1 × 2 = 512 Hz
f3 = f1 × 3 = 768 Hz
The second harmonic (first overtone) is 512 Hz. The third harmonic (second 
overtone) is 768 Hz.
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Validate
The first overtone is double the frequency and thus an octave higher, as expected.

22. Frame the Problem
- This problem involves an open air column whose fundamental length is L1 = λ

2
.

- The first overtone is twice the fundamental frequency; second overtone is three
times the fundamental frequency

- Speed of sound in air is needed to determine the frequency.

Identify the Goal
The first three harmonics for a bugle, f1, f2, and f3

Variables and Constants
Known Unknown
L1 = 2.65 m λ
assume v = 344 m/s f1, f2, and f3

Strategy
Calculate the fundamental wavelength from the first resonance length.
Use the wave equation to find fundamental frequency, f1
Multiply f1 by 2 and 3 to find overtones.
λ = 2L1

= 2 × 2.65 m
= 5.30 m

v = f1λ
f1 = v

λ

= 344 m/s
5.30 m

= 64.9 Hz
f2 = 2 × f1

= 129.8 Hz
f3 = 3 × f1

= 194.7 Hz

(a) The lowest note a bugle can play (when speed of sound is 344 m/s) is 64.9 Hz.

(b) The next two higher frequencies that will produce resonances are 130 Hz and 
195 Hz

Validate
(a) The speed of sound and the frequency should determine the wavelength. Dividing

the wavelength by 2 should determine the bugle’s length. Check:
(344 m/s)/(64.9 Hz)

2
= 2.65 as given in question.

(b) The second overtone should be the fundamental + second overtone for an open
pipe. Check: 64.9 Hz + 129.8 Hz = 194.7 Hz, as calculated.

23. Frame the Problem
- This problem involves an open air column.
- The first overtone (second harmonic) is double the resonant frequency.
- The length of the tube for the fundamental (first harmonic) is half the wavelength.
- The wavelength can be found from the frequency and the speed of sound.
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Variables and Constants
Known Unknown
f1 = 87.3 Hz f2
v = 344 m/s λc

Strategy
Double first harmonic to get second harmonic.
Use universal wave equation to find fundamental wavelength.
First resonant length is L1 = λ

2
(a) f1 = 87.3 Hz

f2 = f1 × 2
= 176.6 Hz

(b) v = f λ
λ = v

f1

= 344 m/s
87.3 Hz

= 3.94 m

l = λ
2

= 1.97 m

(a) The second harmonic is 177 Hz.

(b) The length of the tube for playing the fundamental is 1.98 m. To play this note,
lips must be as relaxed as possible, and the slide should be pushed out to its maxi-
mum length.

Validate
Doubling the length of the tube determines the wavelength; multiplying this figure
by the frequency calculates the speed of sound. Check: 1.97 m × 2 × 87.3 Hz
= 344 m/s, as given.

Practice Problem Solutions
Student textbook page 431

24. (a) Frequencies are close enough together so that person would hear a note of 
approximately 516 Hz fluctuating in intensity.

(b) Frame the Problem
- Two forks of slightly different frequency are sounding at the same time.
- Beats will be heard.

Identify the Goal
Beat frequency, fbeat

Variables and Constants
Known Unknown
f1 = 512 Hz fbeat

f2 = 518 Hz

Strategy
Beat frequency is the difference in frequencies.
fbeat = |518 Hz − 512 Hz|

= 6 Hz
The beat frequency is 6 Hz.
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25. Frame the Problem
- Two forks of slightly different frequency are sounding at the same time.
- Beats will be heard.
- The number of beats per second equals the difference in the frequencies.

Identify the Goal
Number of beats, N, heard in 3.0 s

Variables and Constants
Known Unknown
f1 = 440 Hz fbeat

f2 = 437 Hz N

Strategy
Number of beats per second, fbeat, is the difference in frequencies.
Multiply fbeat by the time interval to calculate the total number of beats.
fbeat = |f1 − f2|

= |440 Hz − 337 Hz|
= 3 Hz

N = fbeat × ∆t
= 3 Hz × 3.0 s
= 3 s−1 × 3.0 s
= 9

There will be 9 beats heard in 3 s.

26. Frame the Problem
- The trumpet and piano notes are being sounded together.
- Beats are heard, so the frequencies are close.
- The beat frequency gives the difference in frequencies.
- There are two possiblities: the trumpet may be a little above or a little below the

piano note.

Identify the Goal
The two possible frequencies, ft1 and ft2, for the trumpet note

Variables and Constants
Known Unknown
fp = 256 Hz ft1

N = 10 ft2

∆t = 2.0 s

Strategy
Find beat frequency from N and ∆t.
Trumpet note is either that many Hz above piano note or that many below piano
note
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fbeat = N
∆t

= 10
2.0 s

= 5.0 Hz
ft1 = fp + fbeat

= 256 Hz + 5 Hz
= 261 Hz

ft2 = fp − fbeat

= 256 Hz − 5 Hz
= 251 Hz

The trumpet frequency could be 251 Hz or 261 Hz.

Validate
The possible trumpet frequencies should be 5 Hz on either side of 256 Hz.

27. Frame the Problem
- The piano note and tuning fork are played together; beats are heard.
- The piano note must be a little above or below the fork note.
- Tension on string is slightly increased, so piano note is raised.
- More beats are heard, so the sound of the piano note is moving away from tuning

fork frequency.

Identify the Goal
(a) Original frequency of piano note, fp

Variables and Constants
Known Unknown
ff = 440 Hz fbeat

N = 12 fp
∆t = 4.0 s

Strategy
Find beat frequency from N and ∆t
The sound of the piano note must be that many Hz above the sound of the fork note
because raising the frequency did not synchronize the two sounds.
fbeat = N

∆t
= 12

4.0 s
= 3.0 Hz

fp = ff + fbeat

= 440 Hz + 3 Hz
= 443 Hz

The piano string’s original frequency was 443 Hz.
(Note: There is a mathematical possibility for the original string to have been 
437 Hz. When the tuner tightened the string, he might have pulled the string past
the correct frequency, all the way to 443.5 Hz. The use of the word “slightly” in this
question can rule out this possibility.)

(b) The piano is more out of tune after tightening the string, because more beats were
heard per second.
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Chapter 9 Review

Answers to Problems for Understanding
Student Textbook pages 444–445

40. (a) v = 331 m/s + 0.59TC

= 331 m/s + 0.59 m/s
˚C

(−40˚C)
= 307 m/s

(b) v = 331 m/s + 0.59TC

= 331 m/s + 0.59 m/s
˚C

(5˚C)
= 334 m/s

(c) v = 331 m/s + 0.59TC

= 331 m/s + 0.59 m/s
˚C

(21˚C)
= 343 m/s

(d) v = 331 m/s + 0.59TC

= 331 m/s + 0.59 m/s
˚C

(35˚C)
= 352 m/s

41. (a) 355 m/s = 331 m/s + 0.59TC

0.59 TC = 355 m/s − 331 m/s
= 24 m/s

TC = 24 m/s
0.59 m/s/˚C

= 41˚C

(b) 344 m/s = 331 m/s + 0.59TC

0.59 TC = 344 m/s − 331 m/s
= 13 m/s

TC = 13 m/s
0.59 m/s/˚C

= 22˚C

(c) 333 m/s = 331 m/s + 0.59TC

0.59 TC = 333 m/s − 331 m/s
= 2 m/s

TC = 2 m/s
0.59 m/s/˚C

= 3.4˚C

(d) 318 m/s = 331 m/s + 0.59TC

0.59 TC = 318 m/s − 331 m/s
= −13 m/s

TC = −13 m/s
0.59 m/s/˚C

= −22˚C

42.
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43. v = 331 + 0.59TC

= 331 m/s + 0.59 m/s
˚C

(8˚C)
= 335.7 m/s

∆d = v∆t
= 335.7 m/s × 2.1 s
= 705 m
= 7.0 × 102 m

44. (a) fbeat = 14
4.0 s

= 3.5 Hz
Possible frequencies are 436.5 Hz and 443.5 Hz.

(b) He could tighten the string a little and see if the beat frequency reduces. If the
beat frequency reduces, he was playing the lower frequency.

45. (a) The oscilloscope pattern would show smooth repetitions, indicating that the notes
combined to form a wave that sounds harmonious.

(b)

46. (a) As the pipe is raised, if the open end reaches a length that is 1
4

the wavelength of
the tuning fork (or another odd multiple of the wavelength), resonance will occur
and the fork’s note will be amplified.

(b) An air temperature of 22˚C gives a speed of 344 m/s.
λ = v

f

= 344 m/s
880 Hz

= 0.39 m
In a closed air column, resonance lengths are odd multiples of a quarter of a wave-
length. Therefore, the first four resonance lengths are 9.8 cm, 29 cm, 49 cm, and
68 cm.

47. (a) The interval between resonance lengths in an open air column is half of a wave-
length. Thus, the wavelength is 2 × (57 cm − 38 cm) = 38 cm.

(b) At 18˚C, the speed of sound is 341.6 m/s.
f = v

λ

= 341.6 m/s
0.38 m

= 899 Hz

48. If the well was 500 m deep and the stone was not subject to air resistance, the trip
down of the rock itself would take about 10 s. If the well was about 140 m deep, the
trip down would take about 5.3 s and the time for the sound to return would be
about 0.7 s.
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49. λ = v
f

= 340 m/s
5500 Hz

= 0.0618 m
The wavelength of the siren is 0.062 m.

50. v = 2.4 × 320 m/s × 3600 s/h
1000 m/km

= 2764 m/km

= 2.7 × 103 m/km

51. Step 1: Find speed of sound at 31˚C:
v = 331 m/s + (0.59 m/s/˚C)(31˚C)

= 349.3 m/s
Step 2: Find distance
distance = 0.75 s

2
× 349.3 m/s

= 131 m

= 1.3 × 102 m

52. Time for balloon to fall, assuming constant acceleration of 9.8 m/s2, is

∆t =
√

2∆d
a

=
√

2(12.0 m)
9.8 m/s2

= 1.56 s
Person cries out after 1.5 s, therefore sound must reach person in 0.06 s. Assuming
the temperature to be 20˚C, and thus the speed of sound to be 343 m/s, time for
sound to reach person is (12.0 m)

(343 m/s)
= 0.0350 s. Therefore warning will reach person in 

time for person to make an instantaneous jump out of the way.

53. (a) The angle of reflection is 55 .̊

(b) The angle between the incident ray and the reflected ray is 110 .̊

54. The angle of reflection is 90˚ − 34˚ = 56 ,̊ which is the angle of incidence.

55. The angle of incidence is 27 .̊ When the mirror is tilted, the new angle of incidence
will be 19 .̊ The angle between the original incident ray, and the reflected ray will be
54 .̊ The angle between the new incident ray, and its reflected ray will be
(27˚ − 8˚) × 2 = 38 .̊ The total change in the angle of  reflection will be
54˚ − 38˚ = 16 .̊

56. ni sin θi = nR sin θR

nR = ni sin θi

θR
= 1.333 × sin 70˚

sin 40.0˚
= 1.95

57. ni sin θi = nR sin θR

sin θR = ni sin θi

nR
= 1.51 × sin 20.0˚

1.333
= 0.3874

θR = sin−1 0.3874 = 22.8˚
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58. The light ray enters the hypotenuse of a right-triangle retroreflector 3.5 cm from the
lower corner at an angle of 30˚ to the normal. Its angle of refraction is 19.2˚ to the
normal. The ray continues to the bottom of the retroreflector where its angle of inci-
dence and reflection is 64.2˚ to the normal. It then reflects off the side, with angles of
incidence and reflection 25.8˚ to the normal, and travels back to the hypotenuse
where its angle of incidence is 19.2˚ and angle of refraction is 30˚. The exiting ray is
parallel to the incoming ray.

59. n = c
v
; v = c

n
= 3.00 × 108 m/s

1.333
= 2.25 × 108 m/s

v = ∆d
∆t

; 

60. (a) ni sin θi = nR sin θR

nR = ni sin θi

sin θR
= 1.00 × sin 57˚

sin 44˚
= 1.207 = 1.2

(b) ni sin θi = nR sin θR

sin θR = ni sin θi

nR
= 1.00 × sin 27˚

2.42
= 0.1876

θR = sin−1 0.1876 = 10.81˚ = 11˚

(c) ni sin θi = nR sin θR

sin θi = nR sin θR

ni
= 1.33 × sin 28˚

1.00
= 0.6244

θR = sin−1 0.6244 = 38.64˚ = 39˚

61. ni sinθi = nR sin θR

sin θi = nR sin θR

ni
= 1.362 × sin 25˚

1.54
= 0.3738

θi = sin−1 0.3738 = 38.64˚ = 21.95˚

62. First, determine the index of refraction of the special glass:
ni sin θi = nR sin θR

ni = nR sin θR

sin θi
= 1.00 × sin 90˚

44˚
= 1.4396

Next, determine apply Snell’s law again to determine the critical angle:
ni sin θi = nR sin θR

sin θi = nR sin θR

ni
= 1.333 × sin 90˚

1.4396˚
= 0.9260

θi = sin−1 0.9260 = 67.81˚ = 98˚

63. (a) v = ∆d
∆t

; ∆d = v ∆t = 3.00 × 108 m/s · 3 × 10−10 s
2

= ±0.045 m = ±4.5 cm

(b) A laser has a fine, high-intensity, collimated beam that does not spread out as it
travels.

64. The wavelength of the blue light was 4.7 × 10−7 m.

λ ≅ ∆yd
x

λ ≅ (21.1 × 10−3 m)(1.8 × 10−5 m)
0.80 m

λ ≅ 4.7 × 10−7 m
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65. The wavelength of the sodium-vapour lamp is 5.89 × 10−7 m or 589 nm.

λ ≅ ∆yd
x

λ ≅ (0.589 × 10−3 m)(1.00 × 10−3 m)
1.00 m

λ ≅ 5.89 × 10−7 m
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